Posted on

CanJam SoCal 2017

This weekend we’ll be in LA exhibiting at CANJAM SOCAL 2017!

What we’ll have at our booth:

(Above – CANs Shown from Left to Right)  Sony’s latest MDR-Z1R, Sennheiser HD800s, Hifiman HE1000 V2, Focal Utopia

(Above – GEAR Shown from top to bottom) AMP – iFi – Pro iCan, USB Audio Bridge – Singxer SU-1, DAC – Holo Audio Spring KTE (Kitsuned Tuned Edition) 

We’ll also have a Level 1 Spring DAC (not shown).

The KTE (Kitsune Tuned Edition) Singxer SU-1

(Not shown in our setup and arriving just in time for the show are STAX SR-009)

STAX SR-009

To run them we’re pairing them with the Pro-iCAN and:


We will also be featuring the Pro iESL Energizer (Also has been known as iCAN ESL/Energizer). iFi threw in some nice upgrades so it is notably better than what was heard the RMAF Denver 2016.

The Pro iESL is an audiophile-grade ‘energizer’ for electrostatic headphones.

Notes on Electrostatic Headphones

Electrostatic headphones require very high voltages for operation. For example, Stax are around 101dB@ 100V, compared to around 105dB @ 1V for a common inefficient full size headphone. On top of that, they need a ‘bias voltage,’ usually 580V for modern Stax.

Our Specials for CanJam (April 7th-10th) Discounts:

Singxer SU-1 $50 off (Original not KTE)
Kitsune HiFi Interconnects %30 off

Visit the Kitsune/Holo Audio booth to enter a raffle for the following free give-aways:

Singxer – SU-1 (QTY 1)
Holo Audio – Titanis (QTY 6)
Kitsune HiFi – SPDIF RCA Cable (QTY 2)
iFi – iDefender 3.0 (QTY 2)
iFi – iSilencer 3.0 (QTY 2)

Posted on

CanJam SOCAL 2017 – Photos from the event and of our booth.

 

Posted on

NOS vs OS (no oversampling vs oversampling)

Sample rate, non-oversampling and oversampling

 

We know that in the real world, music is continuous, the image is continuous. TV or film, in fact, is composed of a static picture of the screen, the static picture of the rate of rapid switching, the human eye to see a continuous picture. So, how fast the continuous picture? Is a second 50, as long as this rate, the human eye will not be aware of the intermittent switching between the screen, of course, a second 50 is a minimum requirement, if you can do more faster, it can be Improve the visual effects. For audio, it is the same concept, sound information, as long as the intermittent information is enough, they can be interpreted as a continuous ear music. So, the human ear how much intermittent information can be interpreted as continuous information? Let’s first talk about the human ear can hear the frequency range, 20-20000 Hz. So, if you want to reflect the highest frequency of 20K, then how much intermittent information is needed? Here, I need to introduce a proper noun “Nyquist frequency”, the specific principle we do not need to go into here, we only need to know the results on it. As a result, at least twice the “intermittent information” of 20K is required to express a frequency of 20K. Here, we will be a “intermittent information” as a sampling point. In other words, If we have to be able to reflect the 20K audio, you need at least 40K a second sampling point. So, we come back to see the standard CD, CD standard is 16bit / 44.1Ksps. In this article, we will not explain what is 16bit, which in the follow-up article I will explain. The 44.1Ksps is the sampling rate, we can see, from the theoretical minimum of 40K, only about 10% more margin, a little reluctantly.

In the CD has just appeared, there is no oversampling technology, but as people found that the sampling rate of 44.1K is not enough, how to solve the problem? So over-sampling technology was born. So what is oversampling? Simply put, because 44.1K sampling rate is too reluctantly, if there is a higher sampling rate is bound to have a better effect. However, we recorded in the CD information only 44.1K a second, how to become 88.2K, 176.4K or even higher? This needs to do the interpolation operation, through the mathematics method, calculates the missing sampling point, then insert to original sampling points.

In the oversampling operation, an integer multiple of oversampling is the easiest to do, not prone to problems. Therefore, we should ensure that the oversampling is an integer multiple, if not an integer multiple, such as 44.1K oversampling to 48K, which requires higher computing resources, very prone to problems, it should try to avoid this situation appear.

Today, digital audio in the oversampling of the road has farther and farther, 4 multiplier, 8 multiplier is not surprising, 16 multiplier, 32 multiplier or even higher, this is the mainstream trend. If it is 32 multiplier, then only 1 of 32 sampling points, is from the original record information, and the remaining 31 sampling points are derived from the interpolation calculation. So, can we really trust the 31 sampling points from interpolation? This is what we need to discuss the following topic.

Have to say, the mainstream audio technology, and even designers, have confidence in the 31 calculated points of the sample. But the real fact is that audio-specific applications are not suitable for use with oversampling technique. Now more and more people are aware of this problem and found that they had previously believed in things, in fact, there is a problem. Yes, we are now in the process of negating the current mainstream technology. It is like China has finally realized the importance of environmental protection, began to cut a lot of high-polluting industries, although those highly polluting industries have brought us wealth, but we now pay more attention to the environment, about wealth, we can use other methods.

The advantages of oversampling

Before talking about the problems of oversampling, let’s talk about the benefits of oversampling. Audio technology industry are not all fools, If there no good things, no one will be interested, how it will be developed till today?

First of all, If we analyze the spectrum rate of a signal with sample rate of ‘F’,  Then will have a center in F / 2, the left and right part of spectrum is mirrored at this center point, assuming a 1K audio signal at 48K sampling rate, then, in the spectrum, you can see that there is a signal at 1K, also have another signal at 47K.

Therefore, we can see, half of 48K is 24K, 24K as the center, 1K signal and 47K, is a mirror image relationship. Similarly, if a 5K signal, there will be a 43K of the mirror signal.

The frequency of these mirror images are distributed in the 24K to 48K, although the human ear can not hear more than 20K frequency, it can be ignored. But if the following amplifier is not ideal, two different frequencies may cause intermodulation distortion (IMD) to produce a new frequency falls within the audio range. Therefore, in order to eliminate the hidden troubles, reduce the demand for the following amplifier, these signals outside the audio bandwidth should better to filtered out. Then the problem is that the analog filter, if you want to protect the 20K bandwidth in the amplitude and phase to be flat, but also filter out those very closed 24K-48K signal, which becomes impossible, although a high-order analog filter can be very steep cutting, but it has great impact on the audio bandwidth inside 20KHz, the result is not worth the candle.

The other advantages of digital filters is that they can be perfected in the frequency domain. Digital filters can be used for oversampling and filtering easily. For example oversampling 4X times, 48K * 4 = 192K. 192K half is 96K, then 0-20K audio signal to 96K as the center of the mirror image is 176K-196K. Which has been opened in the middle of the buffer zone is large enough to allow the analog filter to work well.

The Audio Engineering Society has specified a measurement standard for DAC and digital amplifier measurements, called AES-17, which requires a complete filtering off signals outside the 20K audio range to avoid problems affecting measurements. If the DAC is over-sampling, even if not in accordance with the standard will not have any impact, because the out-band of the signal has been filtered out off very clean. However, if the non-oversampling DAC, if not in accordance with this standard will cause the measurement results will be wrong.

In addition, in the high frequency part, if the oversampling processing is not performed, the amplitude of the sample will be attenuated due to the lack of samples. If at 48K sampling rate, signal at 20K will be 2-3db attenuation. Over sampling process will not have this problem.

The problems of oversampling

As you can see, oversampling is really a very good technology and it solves a lot of problems. It can be said that, based on the digital filter, over-sampling technology is perfect at frequency domain, even the very simple digital filter, the performance in frequency domain is awesome. Well, then, we have to talk about is the problem of oversampling, which is why we want to reject this technology.

First, oversampling will have a ringing artifact. A pulse signal without oversampling should be as shown in Figure 1, but the oversampling technique we are using now leads to distortion in Figure 2, or Figure 3.

 

   

 

 

 

 

 

 

 

Figure 1                      Figure 2                                       Figure 3

 

In Figure 2, we see that when a signal is transformed, it produces some ringing before and after the transform. There is some new technology which can result in Figure 3, which can effectively remove the pre-ringing, but the post-ringing will become quite large.

From a musical point of view, the pre-ringing is like there is something came out before a note should appeared, this will cause some oddly feeling. Post-ringing is like echo, resulting in some additional reverb, the playback environment will usually have a certain reverb, for example, if we in the room, the sound is from multiple souces. First, the sound source generate Direct sound to you ear, then there sound will reflect on the wall then reach to you ear, and some are reflected several times before it reaches to your ears. It should be noticed, the post-ringing in Fig. 3 is much bigger than in Fig. 2, so when it reaches that level, you will feel the sound is lagged and the transient will be poor. In addition, the post-ringing should disturb the original room reverberation, resulting in the positioning of the instrument in the sound field has also been a problem. The reverberation mode of a room is fixed, but the post-ringing generated by oversampling is subject to change all the time. So the sound field will be confused, the position of instruments are flying. From the listen experience point of view, I personally think that Figure 2 has smaller problem than Figure 3.

If from the waveform you can not directly understand how the ringing artifacts can affect the listening experience. The following picture may be more intuitive to understand, because the ringing effect also exists in the image processing.

 

 

 

The left is the original image, the right is ringing artifact. Maybe some people will think that the right is the high-resolution details, edge sharpening will highlight some of the lines, but at the same time the loss of delicate texture and natural transition. Have you noticed behind this men, there is a men in black, he is watch back. In the original image, we hardly notice that person, but in the right image, it is much easier to noticed. So, as an audiophile, which do you like?

Why the above problems look so bad, but still haven’t been noticed as a big problem for a very long time? Because the audio industry using spectrum analysis to measure various standard specs. The digital filter which we used for over-sampling, has perfect performance in frequency domain. But in the time domain, it is very bad. In an easy word, the frequency domain is equivalent to the content, time domain is equivalent to the order.

For example, the following statement, the content is complete,

  1. Little monkey can not find the father and mother, very anxious.
  2. Little monkey can not find the father, and mother very anxious. (A small change in the order, but has caused ambiguity)
  3. Dad can not find mother, little monkey very anxious. (Greater variation in order, greater ambiguity)
  4. Dad not find can little, very mother monkey anxious. (More chaotic order, although the content is still complete, but has no meaning)

 

Moreover, the missing information, whether the mathematical calculations can be very good to calculate the missing information and make up for it?

Here, we first talk about people’s vision and hearing, eyes and ears is just a pick up information organ, the information is transmitted to the brain, the brain has a special part responsible to interpretation of these informations. The brain is very powerful of these analysis Functions, Our modern science, even with a super computer, can not compete with a brain. How brain can analyze these information so powerful, is still a myth to our modern science.

As a visual example, we know that we need two eyes to form a three-dimensional vision, that if you try to close one eye, you will experience some impact, but not very big, you can still know how far the objects is away from you. You can still have daily life without much impact. The 2D information capture with one eye only, after the analysis of brain, can easily make up three-dimensional information which the original information do not have.

As an example of hearing, we know that we have only two ears, in a horizontal line. So, we distinguish left and right in the sound field is very easy to understand, because the two ears are in a horizontal line. But why can we tell if the sound is coming from up side or down side? This is also because of the brain has done some very complex calculation, and make up those vertical information which was not able picked by two horizontal ears.

Above these two examples, we can not use modern science to achieve, even if we ignoring the cost. But the human brain can achieve it like a piece of cake.

If there is a very simple sentence

1234567

The middle one is lost

123_567

The lost information, the computer is very easy to fill. For the human brain, it is also very easy to fill

 

Again, if there is now a slightly more complex sentence

Little monkey can not find the father and mother, very anxious.

One word is lost

Little monkey can ___ find the father and mother, very anxious

If the audio digital filter try to fill it, will be a strange result like this

Little monkey can can find the father and mother, very anxious

But for the human brain, the correct fill this information is not a bit difficult, the human brain analyze the rest of those messages to understand the meaning of the whole sentence should have, so that the correct fill that missing information.

Therefore, the conclusion comes out, for simple and monotonous information, the existing calculation method can be used to fill it correctly. However, the more complex information, the more the existing calculation method will fill in the wrong information. The human brain, is much more powerful in this case.

For the missing information, the traditional audio industry believe “there is always better than nothing”, but this is actually a wrong direction. For people, ” rather go without than have something shoddy “, a wrong information is far more harmful than no information. Without this information, our brain can make up. But if there is a wrong information will be misleading, and also lost the opportunity to make up by human brain. This is like a pot of soup lack a piece of meat, that may not be a big deal, but if you make up a dead rat into the soup. Rats are also meat, for measurement specs, a pot of soup that maked up enough of the meat, is a better result.

Measurement and listening

Here, we can see that, for audio, we should understand that the audio industry’s existing measurement spec. can not correspond to people’s listening experience. We are not able to use those number to quantify our listening pleasure. These spec tend to be analyzed from the completeness of the content. However, this is not the case for human feelings. Complete information, but the order of the chaos will have disastrous consequences. Likewise, more information is not meant to be better than less information, and a well-designed non-oversampling DAC, we will find richer and more natural details.

 

2 is greater than 1, even primary school students know it, but more advanced wisdom is to know how to do correct trade-off. Less is More

Posted on

Singxer SU-1 KTE (Kitsune Tuned Edition) – Tuned PSU (3.2uV output noise!)

We have spent a lot of hours with the Singxer SU-1 and recommend this product to many of our customers. It pairs well with most any dac! This SU-1 also has proven to bring the most out whatever dac you choose to pair with it.

Recently we have been modding the SU-1 to improve the power supply.

 

We have a KTE edition we have been working on and a few prototypes approx 3uV and 125db PSRR. Also in the process having had upgrading the caps on the main board and the psu board. Pure silver wire is used for hookup wire, an upgraded fuse, pure copper Kitsune Badging, and these KTE editions will come with an **optional ultra premium HDMi i2s cable (Supra HD5 0.5M HDMi i2s cable). So far we are very pleased with the results. Below are some photos of the KTE SU-1 and we are gauging the interest for these as a product we would offer. Please contact us for any specifics or if you’d like to place a pre-order.  Pricing is 689usd for complete installation modding service on a new SU1 with all components and labor included. HDMi cable is optional extra and am waiting to confirm pricing for this item as well. Upgrades are available if you own the SU1 and purchased from KitsuneHiFi originally. The cost is 290usd plus shipping cost to and from.  Please contact us if you’re interested.


Solid copper KitsuneHiFi fox badging is available for KTE products (we sell these to customers who would like them for their official KTE dac)

email us with your serial # to verify and the price of the badges vary. Below are a few samples of our KTE badging

Here are some internal photos of our KTE edition SU1

Pure silver OCC solid core wire was used for the PSU to mainboard connecti ffon (new film caps and power caps
 Take note the new 5 caps used on the mainboard
KitExcellent components have been chosen for the SU1 KTE.

 

 

 

Posted on

Audio-GD NOS11 – Custom with many extras!

I’ve owned this Audio-GD Master 11 for a little over a year and it’s served me very well as my end game DAC/Amp for headphone use.  It’s more than capable to drive HE6 headphones and even can power speakers from the dual 3pin output on the front panel! No joke! it’s truly a beast! I’ve done a lot of mods to this, or I should say i’ve shipped it to the factory and had Kingwa himself do all the updates/upgrades!

 

Up for sale is my beloved Audio-GD Master11 – originally purchased direct from Kingwa when it was released. It was sent back to him to update to the NOS11 at factory.

 

*Updates were Norne Audio Silvergarde S wiring to replace ALL the copper OCC wire in the amp/dac.

*All connectors replaced with EiZZ tellurium copper/gold plated. (XLR and RCA’s.*)

*Kingwa also hardwired or soldered the upgraded gain stages (+6db gain for a total of 22+DB)

*This has the Amanero Combo 384 USB module

*HDMi i2S module options installed. Please note all these upgrades.

*WA Chip on the DSP

*3M AB5050S EMI/RF film on the pcm1704uk’s, and over the front panel output wires/connectors to shield from Eddy Current from the R-Core transformers.

*Updated with the newest firmware in Early December (nice increase of soundstage and detail retrieval. I would say 5-8% increase/improvement from previous firmware/DSP)

*Black Screw update (replaced all silver screws on front/sides etc)

 

I’m selling this to fund our new home that is in need of renovations.This is a one of a kind dac/amp and a very high end setup. There is tremendous value in this gear. The wire alone is several hundred dollars, and the connectors are several hundred dollars. I shipped it back to China for 260usd to have the owner of Audio-GD do these update/upgrades. So add labor too. I hope this goes to another fellow Audio-GD enthusiast. This is an incredible amp/dac and one of the best i’ve heard. Truly an end game setup. It will drive any headphone and do so with ease!

 

Also comes with aluminum remote control (not shown in photos.) perfect shape.

 

This will come shipped in original box. Please allow 80USD to ship to USA only. and buyer pays paypal fees 2.9% – Email us if you’re interested in this DAC/AMP

price is 1900usd + 80 shipping/paypal fees. USA only

 

 

 

dsc00151-large dsc00153-large dsc00155-largedsc00159-large dsc00163-large dsc00167-large dsc00169-large dsc00172-large dsc00173-large dsc00174-large dsc00175-large dsc00182-large dsc00132-large

 

 

 

Posted on

Introducing iFi’s newest and smallest Amp/DAC

Nano iDSD ‘Light Edition’

Pocket rocket.nano_idsd_leSouthport, UK – 9th December 2016

Small, dark and handsome The original nano iDSD redefined the US$200 price class for sonics with a worldwide following of portable/home music lovers enjoying all formats from DSD to MP3.
The new nano iDSD ‘LE (Light Edition) in stunning dark titanium is a $129 reboot:

1. Same stunning ‘True Native’ Burr-Brown PCM/DSD chipset

2. Headphone power output of 130mW with 10-hour battery life

3. RCA outputs on analogue volume control

Below US$150, there is nothing as advanced as the nano iDSD LE:

Features

•Burr-Brown ‘True Native’ chipset

• AMR trickle-down ZeroJitter Lite® for low-jitter/phase-noise

• DC-Infinity circuit, DirectDrive® Servo-less circuit

•Battery-life ~10 hours (Compared to original nano DSD, no SPDIF out, no filter switch and DSD128)

Specifications:

•Power Source: Battery/USB Bus power

•Battery Life: ~ 10 Hours playback*

• Formats: 44.1/48/88.2/96/176.4/192/384KHz PCM

2.8/3.1/5.6/6.2/11.2MHz DSD 353/384KHz DXD

• Bit-Perfect DSD & DXD DAC by Burr Brown (1-DAC Chip; 2-Channel; 4-Signals)

• Input: USB 2.0

•Output Audio RCA 3.5mm Headphone

•Dynamic Range: >104dB

• THD &N (35mW) < 0.005%

• THD &N (Line) < 0.005%

• Output Power (16R): > 130mW

• Output Voltage: >1.65V (>100Ω)

•Output Impedance:(Zout): <1Ω

•Power Consumption: < 3W (charging battery and playback together)

• Dimensions: 106(l)x67(w)x28(h)mm

• Weight: 162g(0.43lbs)

# requires Camera Connection Kit or OTG adapter. Cable sold separately.

Specifications are subject to change without notice. The retail price of the nano iDSD LE US$129

Posted on

Torq’s Review @Head-Fi.org – the HoloAudio KitsuneTuned Edition Spring Dac.

Holo Audio Spring DAC (Level 3) Review by Torq

Head-Fi’er @Torq got his hands on the Level 3 version of the Holo Audio Spring DAC. See why he says “It’s the most musical and enjoyable NOS DAC that I’ve heard so far, and doesn’t give up anything on the technical side” by clicking here: Holo Audio Spring DAC Level 3

Head-Fi Spring Dac

Posted on

Cool projects going on at KitsuneHiFi

The spring dac was special for RMAF 2016 , we decided to promote and show off it’s beautiful design. As it’s exterior is quite elegant and sleek. The interior is something we are very proud of. The pcb is painstakingly designed with care and precision. This is part of how it measures so well with linearity. The left and right channel’s are perfectly mirror images of each other with exactly the same trace lengths and component placement. check out what we did to show this off… Customers are now asking us for this option, It “MIGHT” be available in our store, but the cost is yet to be determined. Likely will be 100usd for a full color, gloss laminated, with squeegee installation tool and shipping included. These are printed on a top of line Latex printer that is capable of 1200DPI resolution. print quality is excellent.

Printing them on our 30k latex printer Stickers for kitsunehifi

Full color stickers have also been made and can be sent on request with orders if we have in stock. All KitsuneTuned Edition items are exclusive to owners/buyers from KitsuneHiFi ONLY.  We are HoloAudio USA and only offer to our direct customers exclusive VIP items for their special edition Dac.

Spring Dac with PCB stickerour end results was a beautiful gloss laminated finish and high resolution image of it’s internal beauty. We are proud of this dac and all the materials that went into it. Each component is specially paired and all are factory authorized and tested. These are backed by Jeff Zhu and fully factory warrantied.  This shows off the beautiful solid silver O-type transformer, our new wiring updates with 1.5mm solid silver wire, direct soldered to pcb with mundorf supremem 9.5% silver solder. also pure silver Oyaide faston connectors, Audio Horizon Platinum reference fuse.

Also we will be offering optional copper badging for some of our new product, check this out. we even got new business cards for RMAF.

My wif'e's Business is always professional.
My wif’e’s Business is always professional.

Copper KitsuneHiFi emblem Copper KitsuneHiFi emblem 1.25 Copper KitsuneHiFi emblem

Solid pure copper badging is actually for a few projects… one will be our new BendyHead Headphone stands, and the other will be optional badges for the spring dac. such as below. Pricing will vary from 10usd-20usd per badge.

 

Kitsune Tuned Edition Copper Badge Kitsune Tuned Edition Copper Badge

Posted on

KitsuneHiFi / HoloAudio USA@ RMAF 2016

Holo Audio USA and KitsuneHiFi was fortunate to make this event and we co exhibited with Headamp in the Canjam Tent! This was a WIN WIN for both of our companies as Headamp truly benefitted from our Kitsune Tuned Edition Spring dac just as much as we did from their World class amps. The Blue Hawaii SE (worlds finest electrostatic headphone amplifier) and the GSX-MK2 which is also considered one of the worlds finest SS headamps.  Our customers were able to hear our dac with very transparent and revealing amplifiers.  Many customers told us we had the best sound in show! that was definitely nice to hear this. Overall the results were very spectacular and we’d be doing this every year now!   Our booth was tight and small yet very busy most of the time.  Our listening station had a pair of LCD4, HE1000V2, MS Carbon, Prototype MS Electrostats, and the Stax 009.  All serious summit fi gear.   Our source was a simple basic Microsoft surface book. From there we used a kimber cable USB cable to our JCAT Isolator (intona industrial pcb), and from that we used the JCAT ISO cable to the Singxer SU-1 (one of our best selling products!)  The singxer SU-1 was the transport that allowed us to use the HDMI i2s input of our spring dac. The HDMI i2s IMHO is the best possible input to use for optimum sound.  Why do we use JCAT isolator? Well show conditions had poor power quality, let alone any laptop has a poor PSU, this was key to eliminate any ground issues with true galvanic isolation of power and data at FULL usb 2.0 480mbps. Honestly I won’t have any audio system without my Jcat Isolator, it’s simply more than subtle.  In show conditions it really does help and we like to thank JCAT, one of our vendors. Check out their new USB Femto card, this thing is sweeeet. 😀 OK i’m doing too much product shout outs, but these companies deserve it. Singxer, for instance, is one company that has USB figured out and has developed a digital to digital convertor with spectacular results. Their SU-1 has femto clocks, Crytek 575, and multistage regulation of power, and the newest XU208 xmos chipset.  We choose their DDC as the ideal pairing with the Spring Dac. It delivers slightly more detail and wider soundstage.